数学家的励志故事(精选23篇)
数学家是指一些对数学有深入了解的人士,将其所学知识运用于其工作上(特别是解决数学问题)。下面是小编为大家整理的关于数学家的励志故事,欢迎大家的阅读。
数学家的励志故事 1祖冲之(公元429—500年)是我国南北朝时期,河北省涞源县人。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家。
祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以"径一周三"做为圆周率,这就是"古率"。后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一。直到三国时期,刘徽提出了计算圆周率的科学方法——"割圆术",用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间。并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。祖冲之究竟用什么方法得出这一结果,现在无从考查。若设想他按刘徽的'"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率"。
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元。
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:"幂势既同,则积不容异。"意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的。为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理"。
数学家的励志故事 2陈省身1911年10月28日生于浙江嘉兴秀水县,美籍华人,20世纪世界级的几何学家。少年时代即显露数学才华,在其数学生涯中,几经抉择,努力攀登,终成辉煌。他在整体微分几何上的卓越贡献,影响了整个数学的发展,被杨振宁誉为继欧几里德、高斯、黎曼、嘉当之后又一里程碑式的人物。曾先后主持、创办了三大数学研究所,造就了一批世界知名的数学家。晚年情系故园,每年回天津南开大学数学研究所主持工作,培育新人,只为实现心中的一个梦想:使中国成为21世纪的数学大国。
陈省身9岁考入秀州中学预科一年级。这时他已能做相当复杂的数学题,并且读完了《封神榜》、《说岳全传》等书。1922年秋,父亲到天津法院任职,陈省身全家迁往天津,住在河北三马路宙纬路。,彼得堡科学院为了整理他的.著作,足足忙碌了47年。他的著作《无穷小分析引论》、《微分学》、《积分学》是18世纪欧洲标准的微积分教科书。欧拉还创造了一批数学符号,如f(x)、Σ、i、e等等,使得数学更容易表述、推广。并且,欧拉把数学应用到数学以外的很多领域。
数学家的励志故事 21十七世纪伽俐略(G.Galileo,意,1564—1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的.关系。1673年前后笛卡尔(Descartes,法,1596—1650)在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。
1673年,莱布尼兹首次使用“function” (函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用 “流量”来表示变量间的关系。
数学家的励志故事 22高斯:德国数学家﹑物理学家和天文学家。他的成就遍及数学的各个领域,在数论﹑非欧几何﹑微分几何﹑超几何级数﹑复变函数论以及椭圆函数论等方面均有开创性贡献;他有“数学王子”的美誉。另外他成功地计算出谷神星的运行轨迹。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。
高斯把前人证明的`缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。
数学家的励志故事 23开普勒是一位天才的几何学家,他把他的数学能力强化了人们对太阳系的认识。开普勒曾经是伟大的天文观测家的第谷·布拉赫助手,而布拉赫拥有一些在当时最细致的行星运动的记录资料。通过分析这些资料,开普勒能够确定和改进哥白尼的太阳系观点:行星围着太阳转,而转动的时间是基于椭圆形状的行星轨道用并用精确定义的数学定律来描述的。
开普勒定律是一个伟大发现,因为它是对物理过程精确且简洁描述。像行星绕太阳的轨道这样,我们世界的事物遵循这各种各样的规律。20世纪的物理学家维格纳有一个优美的'表述,“数学无理由的有效性”。开普勒定律就是这种无理由的有效性的早期例子。
开普勒定律也为牛顿发现他的牛顿运动律提供了条件,尤其是万有引力定律。开普勒对天体力学的贡献让美国国家航空航天局(NASA)将研究太阳系以外的行星的项目以他的名字命名,叫做开普勒任务。
【数学家的励志故事】相关文章:
中国数学家励志故事01-20
数学家名人故事09-22
外国数学家的名人故事08-21
关于数学家的名人故事03-20
关于数学家华罗庚的故事08-27
著名数学家的故事01-29
数学家的故事(精选36篇)03-07
数学家欧拉的名人故事08-10
数学手抄报:数学家的故事02-03